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NEURAL NETWORK MODELS OF AIR COMBAT MANEUVERING

Summary

The primary goal of this project was to explore the applicability of

artificial neural network (NN) models in the domain of ai'. combat

maneuvering (ACM). The work investigated several models: (a) NN
models that select ACM on the basis of training with the production rules of

a model, Air Combat Expert Simulation (ACES); (b) NN models that mimic

the action selections of the Automated Maneuvering Logic (AML) System;
(c) NN models that predict the outcome of engagements flown in the

Simulator for Air-to-Air Combat (SAAC) given summary measures of
various parameters measured during the engagements; and (d) NN
models that predict future aircraft control inputs in SAAC engagements

given the values of flight parameters at particular points in time.

These various models incorporate knowledge about air combat

maneuvers and components of maneuvers as well as rudimentary
knowledge about maneuver planning and situational awareness. For most

of the models, validation tests were conducted using data different from
that used in training the models. The authors provide details on each of
these efforts as well as a review of the ACES model, a presentation of the

basics of NNs, and an overview of a software system developed for the

implementation and testing of the NN models.

Introduction

Problem

Although a great dcl of research has been conducted on the perceptual-

motor skills of fighter plane pilots, the cognitive and decision-making skills
have received relatively little attention. A better understanding of cognitive

skills can make important contributions to pilot training and to various
aspects of performance assessment. In previous work, we have collected

data and developed models relating to pilots' cognitive structures and to the

selection of maneuvers in air-to-air combat (Goldsmith, Schvaneveldt, &

Brunderman, 1985; Schvaneveldt, Andersen, Breen, Cooke, Goldsmith,



Durso, DeMaio, & Tucker, 1983; Schvaneveldt, Durso, Goldsmith, Breen,

Cooke, Tucker, & DeMaio, 1985; Schvaneveldt, Goldsmith, Durso, Maxwell,

Acosta, & Tucker, 1982). While this research has yielded interesting

results, there is still much work to be done to develop better and more

complete models. In this project, we explore the applicability of artificial

neural net (NN) models to the domain of air-combat maneuvering.

Research Goals

Several goals were pursued in this research. First, we needed software

tools for the implementation and testing of NN models. The special tools

were required to accommodate the particular forms of data used to train
and test the networks. Standard, off-the-shelf, software packages were

available, but the programming required to get the data into the required

form rivaled the effort required to produce an NN tool itself. To achieve
maximum control over the nature of our models and the format of data, we

chose to develop the software tools as part of the project.

A second goal was to investigate the representation of a production

system model in an NN architecture. Classical production systems are
often described as "brittle." Such systems only work under conditions that

are explicitly represented in the model. If events lead to conditions that

were not explicitly anticipated, the model sinply fails. NN models, in
contrast, exhibit "graceful degradation." Such systems will generally

produce reasonable responses even when conditions change, particularly if
there is considerabl ri-nilarity between a previously learned situation and

a new situation. NN models are also capable of learning to improve

performance based on encounters with new situations, whereas production

systems mut be improved by adding new rules or by modifying old ones.

In sum, the:-e are several reasons to explore the training of an NN model

using the rules of a production system. This work is reported in Study 1.

As a further investigation of the applicability of NN models to the

representation of the principles embodied in other models, Study 2 trained

an NN model using the performance of the Automated Maneuvering Logic

(AML) as a teacher. The goal was to determine the extent to which the

actions selected by AML could be incorporated into an NN model.

2



Finally, We also pursued the goal of applying NN models to data obtained

from the Simulator for Air-to-Air Combat (SAAC) at Luke AFB, AZ. The

SAAC system supplies detailed information about air-to-air engagements

flown against a human or a programmed adversary. An application of NN
models to performance measurement and a comparison of NN models with

standard statistical data analysis is reported in Study 3. Study 4 attempts to

develop models to predict the future values of control variables (i.e., g

loading and roll angle) using current values of various state variables.

Background

Summary of Air Combat Expert Simulation

Air Comabat Expert Simulation (ACES) is a computer simulation of

expert fighter pilots' cognitive skill in air-combat maneuvering (ACM).

ACES selects single air combat maneuvers for particular airspace

situations. This work has been fully reported in Goldsmith, et al. (1985).

The ACES project had its roots in earlier research by Schvaneveldt and his

colleagues into the nature of cognitive skills of fighter pilots (Schvaneveldt,

et al., 1982, 1983, 1985). This research examined the underlying conceptual

framework used by pilots in performing ACM. Both experts and novices

were studied, and an attempt was made to uncover the cognitive

dimensions on which these two groups differed. Conceptual structures

were represented by multidimensional spaces and Pathfinder net'.,orks

(see Schvaneveldt, Durso, & Dearholt, 1989; Dearholt & Schvaneveldt, 1990

for the definition of Pathfinder networks and a discussion of their

properties). ACES built upon this earlier research by representing the

decision-making processes involved in selecting maneuvers in air combat
in a computer model. Techniques of knowledge engineering in artificial

intelligence (AI) and expert-novice research in cognitive psychology were

employed to derive the model.

ACES uses a production system architecture to select basic fighter

maneuvers (BFM) in a one-versus-one situation. The database of the

production system represents an airspace situation at a particular point in

time. Particular maneuvers are related to situations by way of a set of

condition-action pairs called production rules. The condition side of the



rules specifies a set of flight characteristics for each aircraft; the action side
selects a particular maneuver. Table 1 shows the airspace state
information referenced by the condition sides of ACES production rules,
and Table 2 shows the maneuvers selected by the rules. A sample
production rd-" is shown in Table 3.

Table L Conditions Referenced in ACES Production Rules.

My: Bogeys: Relative:
aspect angle aspect angle angle off
3-9 position 3-9 position slant range

clock position clock position closure rate
altitude altitude difference

airspeed

Table 2. Actions (Maneuvers) Selected by ACES Production Rules.

AC Accelerate LT Lead Turn
BR Barrel Roll LY Low Yo Yo
BT Break Turn NT Nose Low Slice Turn
DT Defensive Turn OT Optimum Turn Vertical
FG Fire Guns QP Quarter Plane
FM Fire Missile RV Reversal
HR High AOA Roll SI Scissors
HY High Yo Yo SN Separation
LR Lag Roll

Table 3. An Example of an ACES Production Rule.

If (conditions)
my aspect angle is between 120 and 180 degrees
bogey's aspect angle is between 0 and 60 degrees
we are within 1,000 feet of altitude
slant range is between 1,000 and 9,000 feet
angle off is between 0 and 45 degrees

then (action)
select break turn

4



A validation study was conducted comparing the selections of ACES

rules to the selections made by National Guard pilots at Kirtland Air Force

Base, NM. Forty scenarios were shown to the pilots who were asked to

select their top three choices (provided that there were as many as three
reasonable choices) from the list of maneuvers (Table 2). These same

scenarios were run through the ACES production rules, and the top three

selections of ACES were identified. Table 4 summarizes these results.

Individual pilots agree with the group consensus about the best maneuver

more than ACES agrees with the group consensus. Interestingly, however,

ACES shows more overlap with the set of maneuvers found in the top three
choices than do the selections of individual pilots. These results suggest

that ACES has some difficulty in properly ordering the alternatives, but it
does quite well at identifying the best alternatives.

Table 4. Results of the ACES validation study.

Comparisons of
group -L dividual maneuver Individual

selections pilots ACES
Top Choice of Pilot Group 46.1% 25.0%

Top 3 Choices of Pilot Group 52.8% 73.3%

A transfer-of-training study was performed in a preliminary test of
ACES as a desktop training system. Student pilots in fighter lead-in

training at Holloman Air Force Base, NM were given an opportunity to
interact with ACES by selecting maneuvers and observing their outcome in

a sim",!ated air-to-air engagement. Instructor pilot IP) ratings on later

training sorties for these students were compared to similar ratings of

students not using ACES during training. The ratings for vhe two groups
were not significantly different. The evaluation was problematic for several
reasons including little control over when and how the students interacted

with ACES and inherently low variability in the IP rating scores. However,

both student and IP responses to questionnaires indicated that the system

was valuable as a training tool.

5



Limitations of Production SYstem Models

There are several reasons to be concerned about the ultimate
appropriateness of production systems for modeling pilot decision making.
Classical production systems are often described as "brittle." Such systems
only work under conditions that are explicitly represented in the rules
found in the model. When conditions are encountered that were not
explicitly anticipated, the model simply fails. NN models, in contrast,
exhibit "graceful degradation." Such systems will generally produce
reasonable responses even when conditions change, particularly if there is
considerable similarity between a previously learned situation and a new
situation. NN models are also capable of learning to improve their
performance based on encounters with new situations, whereas production
systems must be improved by adding new rules or by modifying old ones.
Another advantage of NN models is their ability to accept and produce
continuously valued variables would make them particularly appropriate
for representing the parameters that describe airspace states and for
ordering the priority of alternative actions. ACES handled continuous
variables by specifying ranges of values (e.g., aspect angle between 0 and 30
degrees). A rule then reacts to all values in the range as equivalently
appropriate and all values outside the range as equivalently inappropriate.
Clearly, it would be better to make more continuous distinctions among the
various values both inside and outside the range. For example, it seems
more appropriate to treat 30 and 31 degrees as only slightly different rather
than completely different (as the rule would do).

Thus, there are several reasons to explore the applicability of NN models
in ACM. The next section discusses some of the basic properties of NNs

and their impl.ementation.

Artificial Neural Networks

In contrast to rule-based models, NNs select maneuvers using densely
interconnected networks of simple processing units. These simple units,
called nodes, receive information from external sources (i.e., from input to
the network or from other nodes), sum this information, and then
propagate an activation level to all connected nodes.

6



The advocates of NNs frequently mention the ability of such systems to

learn the appropriate mapping of inputs to outputs from examples and to

successfully generalize that learning to new examples. Perhaps the crux of
NN modeling is the application of appropriate learning algorithms to

appropriate processing network topologies such that a set of connection

weights is found that leads to desired performance. One of the most basic
learning algorithms found in NN models is the Hebbian contiguity, or

associative rule (Hebb, 1949). This simple learning rule states that if two

simple processors are simultaneously active and are connected, then the

relationship between them should be strengthened.

Some types of learning rules rely on external teachers for feedback. In

such networks, learning occurs in an iterative feedback loop composed of
four parts (Lippmann, 1987). First, a pattern is presented and activation is
propagated through the layers of the network. Second, the output activation

is compared against the correct output (i.e., the true output information

associated with a given input pattern), and an error term is computed.

Third, interconnections (i.e., weights) are modified using some scheme
that rc luces the error measure computed in part two. Finally, go back to
step one and repeat this process. This iterative learning scheme continues

until all training patterns produce the correct output.

NNs are able to generalize from previously learned responses to
incomplete or novel instances of stimuli. To the extent that a new stimulus

is similar to a stimulus pattern that has already been trained into the

network, a similar pattern of processing will occur across the network

resulting in a similar response (Arbib, 1986).

For our purposes, we thought that the ability of NNs to accept and

produce continuously valued variables would make them particularly

appropriate for representing the parameters that describe airspace states

and for ordering the priority of alternative actions.

In a production system, examples of airspace scenarios that elicit

maneuvers are defined by the condition half of a production rule. The

representation of when to select a particular maneuver is local to that rule.

NNs, on the other hand, store information in the entire set of connection

weights that define a network. In this case, the representation of when and



how a maneuver is selected is not found in an explicit set of conditions that

have to be matched but, rather, it exists everywhere within the network

(i.e., in every connection weight).

Nonlinear Multilayered Perceptron Model

The multilayer perceptron (MLP) model has one or more layers of

processing nodes between input information and the output layer. A layer
is a set of processing nodes connected to successive layer nodes via a matrix

of weights. That is, a weight matrix represents the connectivity in a layer

where the row dimension of the matrix corresponds to inputs for a given
layer and the column dimension represents outputs for that layer. The

computational power of the MLP stems from the application of nonlinear
activation functions, as well as the associated family of nonlinear learning
algorithms such as the back propagation gradient descent (Rumelhart &
Zipser, 1986).

A feed-forward network operates by passing activation from the inputs

for each layer to the outputs in the layer via the weights on the connections

between the inputs and the outputs. The net input to a given node is passed
through a nonlinear quashing function which keeps the activation of a unit

between zero and one. This passing of activation through the layers is
repeated until the final outputs are computed in this way. Learning in

such networks is a matter of finding a set of weights which will compute a
desired input-output mapping. If the mapping is linear, a single layer is

sufficient. With nonlinear mappings, "hidden nodes" are required
resulting in at least two layers in the system1 .

The learning rule, also called the modified delta or back-propagation

rule, most commonly associated with this model is very similar to the

perceptron convergence rule developed earlier by Rosenblatt (Nilsson, 1990).

The delta rule

AWjk = eSkXj (1)

1Two layers are sufficient if there are a sufficient number of hidden nodes, but more
layers may be used.



states that the weight connecting layer j to layer k will be changed by an

amount proportional to the error found at the layer k node, 8k , and the
activation received from the layer j node, Xj, where e is a learning rate

parameter. The major difference between the non-linear multilayer and

the single-layer perceptron models is found in the method for generating
the 8k term.

The error signal, 5k , for an output node is generated via

8pk = (tpk - Xpk) Xpk (1 - Xpk) (2)

where (tpk - Xpk) corresponds to the difference between the correct output
activation for a given node, k, and an input pattern, p. The Xpk(1 - Xpk)

term, sometimes labeled the quashing function, is simply the derivative of

the sigmoid activation function, Fact (Rumelhart, & Zipser, 1986).

1 i
Factj - 1 + e'nej Jwhere netj = biasj + I ai wij (3)

The derivative of the sigmoid serves to vary the size of the error ( tpk - Xpk)
in terms of amount of activation produced by a node. That is, the derivative

of the sigmoid reaches its maximum as Xpk activation approaches 0.50. In

other words, the sigmoid increases as output activation approaches 0.50
and decreases as output activation approaches 0.00 or 1.00. As the output
activation approaches 0.00 or 1.00 the node is obtaining criterion

performance such that the amount of change per weight should be getting

smaller. The error signal generation procedure, unfortunately, is not so

straightforward in the case of hidden layers.

What is the appropriate or true activation, tpk, for a given hidden layer

node? At the output layer the answer is given directly in terms of criterion

performance as provided by an external teacher. For hidden layers the
solution was provided by Widrow and others (Widrow & Hoff, 1960;

Rumelhart, Hinton, & Williams, 1986). The solution was to simply take the

weighted sum of all successive layer error terms connected to a specific
hidden-layer node as the error term:

5pj = XPj(1-Xpj) 5pk Wkj (4)
i=1



That is, for the kth hidden layer node the error terms for all successive layer
nodes, 8pk, are multiplied by the weights, Wkj, that form the connections

between the j and k layers and summed. This aggregate error term is then

multiplied by the sigmoid function to produce the error term for that node.

Again, the error term is fed to the delta rule and weights are adjusted.

The entire procedure continues until the output activation pattern for all
training stimuli yield difference scores (i.e., tpk - Xpk) that are very small

(Lippmann, 1987). That is, the process continues until all input patterns

are correctly classified.

Back propagation is termed a gradient-descent method in that a
measure of error, 8, for every weight in the network is being reduced by the

learning algorithm. One way of thinking of this is that there is some n-

dimensional space where the weights that define a network at a given time
reside. The weights can be thought of as representing a surface in this

space. To the extent that input patterns are incorrectly classified (i.e.,
produce inappropriate output activation) then there is error associated with

the weights that define the surface in the n-dimensional space. The back
propagation algorithm attempts to minimize this error by modifying the

weight space (Plaut, Nowlan, & Hinton, 1986). When a network has been

trained to classify a set of stimulus patterns, the weight space that provides

the solution is said to be at a minimum in the sense that the error
associated with the weight surface is minimized. That is, the error found

in all the weights has been minimized such that all training set input

patterns are transformed by the weight layers resulting in correct

classifications.

Just as with any gradient-descent method, the back propagation
procedure is subject to becoming trapped in a "local minimum" and,

consequently, failing to find the best solution for a problem. With some
problems, the local minima may be numerous causing great difficulty with

the learning of the input-output mapping.

Artificial Neural Network Models of ACM

In the research performed under this contract, four classes of NN

models of air combat maneuvering have been in. eieigated. The first class

10



performs basic fighter maneuver selection and is a direct descendant of
ACES. The second class descends from the AML. The third and fourth

classes were developed from data collected from the SAAC at Luke AFB,

AZ. The third class uses summary data to predict outcomes (win, lose, or
draw) and is compared to results from discriminant analysis. The fourth

class uses parameter values at particular points in time to predict future
control parameters (i.e., bank and g loading).

Software System for Training and Testing Neural Networks

Although there are several commercially available software packages

for training and testing NN models, several considerations led us to develop
a system that was specifically adapted to our needs. As we discuss more

fully in Study 1, the representation of production rules from the ACES
model as training patterns for an NN model presented several problems.

Overcoming these problems required a system that provided appropriate

inputs based on the specification of a range of acceptable values. We also
needed a method for handling the values of inputs that were not specified by

the ACES rules. Finally, we needed an easy method for saving sets of

connection weights after varying amounts of training to permit an
evaluation of the generalization of the trained models at various levels of

training. Existing software would be difficult to use with the special

problems we faced.

The system we developed was written in Turbo Pascal for the IBM PC

and compatibles. The systems consists of a set of three programs:

NNTRAIN, NNTEST, and NNPLOT. NNTRAIN embodies the back-
propagation learning algorithm to adjust connection weights as various
training patterns are presented. The program allows the user to specify the

number of layers and the number of nodes in each level. NNTEST uses the
weights developed through training on a set of patterns to test performance

on a new set of patterns to determine the extent to which the model

generalizes to new patterns. NNPLOT plots the scores obtained across
training epochs to provide information about the course of learning.

Several variations on scoring methods and presentation of training

patterns are possible as described in the following sections from the
documentation.

11



The NNTRAIN and NNTEST programs allow for several options that

can be realized in one of two ways. Various flags may be included on the

command line following NNTRAIN or NNTEST, or flags may be specified

in files in the current directory named "train.flg" or "test.flg," respectively.

These files may contain the same flags as the command line. Flags allow

specification of various parameters, files, and options. Some flags require

one or more following values. Others simply cause the described effect.

Most flags have defaults. The help screens for each command include a list

of the flags which can be used with the command, the values which must
accompany the flags (if a value is required), the default for the flag, and a

short description of the effect of the flag.

An example command line: NNTRAIN -d test.def -13 -n 4 3 2 1 -q w 95 -r .25

In the example, the -d flag specifies the definition file is to be "test.def."
This file identifies the file containing training patterns, and specifies

within that file what data is to be used and which columis define input and

output parameters. The -1 flag specifies that there will be three layers to the

the network, layers here being defined as the number of layers of weights in

the net. The -n flag defines the number of nodes in each level of the

network, in this case the network is to have four input nodes, three nodes in

the first hidden level, two nodes in the second hidden level and one output

node. The -q flag indicates when the program is to quit. In this example, w

is specified after the -q flag, meaning that the program will quit when the

winner criterion exceeds 95% (see sections on scoring criteria and quitting

methods for details). Finally, the -r flag indicates that the learning rate is

to be set at .25.

12



NNTRAIN: Training a neural network.

flag value default description
-a file none name of summary file for appending summary data
-d file prompt name of definition file
-j integer - : join get ranges for inputs from pairs of patterns and average
-1 integer prompt number of layers of weights
-m e, t or w save weights if better (error, tolerance, or winner)
-n integers prompt number of nodes within each level
-p false permute the order of training patterns each epoch
-q mtd crit manual method and criterion for stopping
-r real 0.45 network learning rate
-s integer multiple of epochs for saving weights
-t real 0.1 value for tolerance error scoring
-u real r, p "unknown" input values and method for setting values

or real for the "unknowns"
-v verbose, display more information during training
-w file random file with weights to initialize net

The -a flag followed by a filename specifies a file to receive summary

statistics after the completion of the NNTRAIN program. If the file

specified does not exist it will be created; if it does the current summary will

be appended to it. The statistics for each run of program are written on a

single line in the file. The summary statistics recorded are" output error,

percent correct (winner scoring), percent correct (tolerance scoring),
learning rate, definition filename, number of layers, network

architecture, and last epoch.

The -d flag followed by a filename specifies a file containing information

about the training pattern file, including the pattern file name, and which

patterns to use in the training.

The -j flag allows ranges for inputs to be specified by using pairs of

patterns. The number of patterns skipped and taken (in the definition file)
should be determined by the number of pattern pairs. The integer following
the -j flag specifies the number of random values in the range which are

averaged to determine a value for each presentation of the pattern. The
larger the value, the more the averages will tend toward the center of the

range.

The -1 flag followed by an integer specifies the number of layers in the

network to be trained.
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The -m flag causes weights to be stored whenever a new maximum

percent correct or minimum output error state is reached during training.

The weights are stored in files specifying the epochs (e.g., 110.wts are the

weights after 110 training epochs). The -m flag must be followed by e, t, or

w indicating whether to use output error, percent within tolerance, or

percent winners, respectively.

The -n flag followed by a series of integers specifies the number of nodes

in each level of the network. The network has one more level than it has

layers.

The -p flag signals the program to permute the training pattern order on

each epoch. This will eliminate any incidental effects of the order the

training patterns. This flag also will slow the program to some extent.

The -q flag is used to control when the NNTRAIN program quits

training the ne- 'ork. There are four different methods that may be used to

stop the program and each method requires a criterion. Thus, the flag

requires ,,two following parameters, a method and a criterion. An example

of the flag might be: -q t 0.05

The methods (mtd) and criteria are as follows:

mtd criterion the program wifl stop when
c integer the criterion number of epochs is completed
e real the overall error is less than the criterion

t real all outputs are within the criterion of correct values
w real the percent correct (winners) meets the criterion

If the -q flag is not given the program will quit when the q key is

depressed. The q key will also stop the program if any of the other methods

are being used as well.

Note that the winner criterion only functions when there are binary

parameters in the output units and there is more than one output unit. See

the scoring methods help section for details.

The -r flag can set the learning rate in the NNTRAIN program by

specifying a value following the -r flag. The learning rate can be thought of

as the step size taken during gradient descent. Learning rate values of over

.45 are not recommended as they can lead to chaotic network behavior.
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The -s flag will save the weights generated after given multiples of
epochs. The multiple is specified by the -s flag (e.g., -s 100) will save the

weights after every 100 epochs. The weights are stored in a file specifying

the number of epochs and a ".wts" extension (e.g., 100.wts).

The -t flag followed by a real number specifies the tolerance level to be
used by the tolerance scoring strategy. For a pattern to be scored correct,
every output unit must be with the tolerance of the correct value.

The -u flag controls how the program deals with "unknown" values in
input patterns. Afte ' the -u two entries are r'equired, the first specifies the

value of unknown values in the training patterns. Because training

patterns are read in as real numbers this value must be a real number.
The second item following the -u flag controls what the program does with

the unknown values. If a constPnt is specified, that constant is used every

time the program encounters an unknown value. If an r is specified,
random values between zero and one are generated each time the unknown

value is found. If a p is specified, pairs of random values (random and 1-
random) are assigned to pairs of unknown inputs.

The -w flag will use weights stored in the filename specified. These

weights were presumably sa-ed after a previous run of the NNTRAIN
program. When the weights option is used, the NNTRAIN program will

read the network architecture from the file, and thus no layer or number of

nodes information need be specified.

NNTEST Testing new patterns.

flag value default description
-a file noxke name of summary file to append stats
-d file prompt name of definition file
-i integer increment for weights files
-o file none store outputs for each test pattern
-t real 0.1 tolerance value for tolerance scoring
-v false verbose, display more information during training
-w file prompt file(s) with weights to define net

The NNTEST program evaluates the weights produced by the NNTRAIN
program against a new set of test patterns. This analysis provides an index

of the ability of the model created by the NNTRAIN program to generalize to

new patterns.
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The -a flag causes a summary of the test statistics for each of the

weights files to be appended to the file specified with the -a flag.

The -d flag followed by a filename specifies a file containing information

about the test pattern file, including the pattern file name, and which

patterns to use in the testing.

The -i flag is used to define a set of weights files to be tested. The files

have names such as "100.wts" where the 100 indicates the number of epochs

of training preceding the saving of the weights. Several such files in
increments of 100 epochs (e.g., 200.wts, 300.wts) can be tested by using the

flag, -i 100 so the program will continue analyzing such files until it can
find no more.

The -o flag causes the outputs produced for each test pattern to be stored

in a file specified with the -o flag.

The -t flag followed by a real number specifies the tolerance level to be

used by the tolerance scoring strategy. For a pattern to be scored correct,

every output unit must be with the tolerance of the correct value.

The -w flag followed by a file specification indicates which weight files

should be tested. The file specification can include wildcards so if -w *.wts

were given, all files in the current directory with the extension .wts would

be used to evaluate the test patterns.

NNPLOD. Plotting the scores over epochs.

flag value default description
-a integer 1 averages the given number of epochs
-f file prompt name of error file

The NNPLOT program uses the error information from the error output

file generated by the NNTRAIN program. NNPLOT will prompt for the

name of this error file. The program will plot the gradient of the three

scoring methods across epochs. The initial plot will show the first 1,800

epochs in three panels of 600 epochs each. When there are more than 1,800

epochs the user may scroll down one panel at a time using the n key.

The -a flag allows the user to average epochs together. If this flag is

used each panel will display 600 times the value given following the -a flag.
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In the plot display, error information is shown in green, percent
incorrect using the winner strategy is displayed in magenta, and percent
incorrect using the tolerance strategy is displayed in yellow. In each panel

the top bar indicates the maximum error for all epochs displayed, while the
bottom indicates the minimum error for all epochs displayed. For percent
incorrect scores, the top and bottom of the panels indicate 100 and zero

percent incorrect.

The Patterns File: Pattern file organization.

The NNTRAIN and NNTEST programs require two files to run. One of

these is a data file containing a rectangular matrix of numbers. Data from
a single observation must be recorded on each line while information
concerning individual parameters must be organized in columns.
Columns are defined by at least one space between parameters, and thus do
not need to be strictly aligned. A sample data file follows:

000
011
101
110

The definition file is used to specify what columns are the inputs as well
as the outputs. The definition file also specifies which training patterns
(lines) are to be used. This example represents the XOR problem. The first

two columns represent the input training patterns, while the last column
specifies the output pattern.

The Definition File: Definition file organization.

The NNTRAIN and the NNTEST programs require a definition file
which specifies a data file and the parts of the data file to be used as inputs
and outputs. The definition file must consist of eight lines. A sample

definition file follows:

xor.pat Pattern file name
xor.scr Score file name
0 Number of lines to be skipped in the pattern file
4 Number of lines to be used as training patterns
2 Number of input columns
12 The column numbers of the input parameters
1 Number of output columns
3 The coJumn number(s) of the output parameters
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In cases where only one item is required on a line, only the first item is
read. When reading column numbers (line 6 and 8) the program reads the
number of items specified on the previous line. Aside from these values no
other items are read from the file; thus comments can be inserted on any
line after the definition parameters have been entered.

One limitation of this coding scheme is that only contiguous lines can be
read. In other words, you may not specify more than one value of lines to be
skipped.

The Flags Files: Flag file organization.

In addition to setting options from the command line, the NNTRAIN
and the NNTEST programs can read options from files named "train.flg"
and "test.flg," respectively. These files must be in the current directory.

Each option in these files must be on separate lines. Once the option is
completely specified comments may be added. If the same options are
specified on the command line, the options from the flags file are
disregarded. A sample flags file follows:

-d test.def Use test.def as the definition file.
-13 Network will have 3 layers.
-n 4 3 21. Use 4 3 2 1 architecture.
-q w 95 Quit when the percent correct (winner strategy) exceeds 95%.
-r .25 Use a learning rate of .25.

Scoring Procedures: The error, winner, and tolerance criteria.

The NNTRAIN and NNTEST programs use three different measures of
performance. The first of these is the error criterion. The error measure is
the total squared difference between the activation levels of nodes in the
network and the correct activation levels.

The winner criterion assumes that outputs are encoded as binary values
(one or zero) and that there is more than one output unit, and only one of
these output units is set to one. The winner criterion calculates the
percentage of training patterns correctly identified. This calculation uses
an algorithm that identifies correct trials on the basis of whether the most
active output node corresponds to the single output parameter set to one.

The tolerance criterion also calculates the percentage of training
patterns correctly identified. In this case, correct trials are based on



whether the output nodes are within a specified criterion value of the

corresponding correct outputs. Note that for a pattern of activation in the

output nodes to be judged correct, all the output units must be within the

tolerance level. If not all output activations are within the tolerance, a

single trial is given a score based on the percentage within the tolerance.
The tolerance value may be set using the -t flag. Additionally in the

NNTRAIN program, the tolerance value can be set through the -q flag

when it is followed by t and the new tolerance value.

All three scoring criterion measures are sent to a score file specified in

the definition file. If the score file exists already, the scoring from the

current run are appended to the end of the file.

These programs were used to train and test the NN models described in

the following four studies.

Study k Application of Neural Networks to ACES

O ective

Recall that ACES selects maneuvers using condition-action or if-then

rules. In all, ACES has 38 production rules that select 12 offensive and 5
defensive basic fighter maneuvers. In many cases there are multiple rules
defining a particular maneuver selection. For example, there are 6 rules
for selecting the acceleration maneuver. During operation, ACES samples

an ACM scenario and attempts to find matches between rules and ACM
conditions. When a match is found, a rule is selected.

Frequently, the conditions for more than one rule are satisfied. When

more than one rule has been selected, a tie-breaking or conflict resolution
procedure is applied in an attempt to determine the best maneuver. ACES'

conflict resolution scheme selects the most general rule. That is, the
maneuver rule that has the fewest airspace descriptors defined (i.e., fewest

number of conditions defin.rd) is selected.

A potentially serious problem found in many rule-based systems that

was also identified within ACES is that conflict resolution schemes operate

at a syntactic level. In other words, the information initi:,lly used to select a

production (i.e., the condition half of rules) is not used in the conflict



resolution process. Rather, conflict resolution is based upon meta-
information suc~i as how many or how few conditions are specified by the
set of rules. It may be the case that subgroups of airspace conditions within
rules carry important discriminative information beyond that found in the
selection measures employed by conflict resolution strategies. Many
conflict resolution procedures ignore the configural aspects of the selection
information contained within a rule.

One approach to capturing very specific configurations of Conditions in
airspace scenarios is to write large numbers of very specific rules.
Unfortunately, in dynamic environments such as ACM this can lead to vast
numbers of rules. In an attempt to overcome this inherent limitation of
rule based expert systems, an NN model of ACM was implemented.

Method

Among the problems that must be solved in the development of an NN
model for selecting BFM is the selection of appropriate patterns on which to
train the network. Since the production rules in ACES were based on
interviews with expert pilots and were validated against experts' decisions,
it was thought that there was an important knowledge base contained
within those rules. The problem is how to represent the rules as training
patterns for training an NN model. There are actually three problems
here: (a) How should the inputs (e.g., angle-off, closure rate) be coded for
presentation to the network? (b) Since many of the inputs specify ranges
rather than particular values, how should ranges be represented in the
tra:ning patterns? and (c) Since each production rule only references some,
but not all, of the possible input variables, how should unreferenced
variables ("unknowns") be represented in the training patterns? Table 5
illustrates one set of answers to these questions by showing one method of
transforming production rules into training patterns for an NN.

With a range of possible values for a specific airspace condition, the
midpoint of the range was used in the network training pattern. This
approach assumes that the midpoint is the ideal value for that particular
rule. Training on that point sLould maximize the response of the network
to that value and decreasing responsiveness should occur with values at
increasing distance from the midpoint. Thus, the midpoint was taken to be



Table 5. Production Rules Represented as NN Training Patterns

Production Rule Network Training Pattern

select acceleration if

my altitude = _ NN inputs: (midpoints of ranges)
my aspect angle = 00 to 450
my airspeed = _ [ _ 22.5 _ 0 __ _ 1 6 7 _ -100_]
my 3-9 position to him = behind
my clock position = -
bogey's aspect angle = - feedback pattern (target outputs):
bogey's airspeed = _
bogey's 3-9 position to me = front (the first position codes acceleration)
bogey's clock position = 5 to 7 [10000000000000000]
range =
altitude difference = -450' to 250'
angle off = -

select break turn if

my altitude = _ NN inputs: (midpoints of ranges)
my aspect angle = 1200 to 1800
my airspeed = _ [ _ 150 ---30 -- 5000 500 22.5]
my 3-9 position to him = _
my clock position = _
bogey's aspect angle = 0* to 600 feedback pattern (target outputs):
bogey's airspeed = _
bogey's 3-9 position to me = (the 15th position codes break turn)
bogey's clock position= _ [00000000000000100]
range = 1000' to 9000'
altitude difference = 0' to 1,000'
angle off = 00 to 450

representative of the range, and generalization to new test cases was

expected to occur according to a generalization gradient established around
the midpoint 2. The underlined blank spaces in both the production rule
and the prototype pattern correspond to conditions that are unspecified.

2It should be noted that the midpoint may not always be the best choice. For example, for
angles with a range from 0 to 30 degrees, the 0 degree point may represent the ideal point
rather than 15 degrees, the midpoint. We tried using these values where they could be
determined, but it made little difference in the outcome. We also tried sampling from the
various points within the range during training, again with little effect on the outcome.
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That is, any airspace descriptor value can bind to this condition. We
employed various strategies for setting the values on these "unknown"
inputs: (a) The unknowns were set to a random value over the total range

of the variable; (b) The unknowns were set to the midpoint of the range of
the variable; or (c) The unknowns were set to some other constant value

such as zero which meant that no input came from that unit 3. The
maneuver categories are simply represented as a binary vector where each
vector position corresponds to a particular maneuver. In this example
acceleration is the first value in the vector and is represented as I while all
other maneuvers are represented by Os. The 38 rules in ACES (which could
be represented as either 37 or 38 patterns) were configured as prototype
training patterns with their associated manpu-ers.

Several different architectures were used to explore the problem space
represented by the training patterns. In each case, the network was
trained for a varying number of passes through the training patterns, and
the trained networks were tested for generalization. The generalization test
involved presenting the same 40 scenarios originally used to test the ACES
model, and the selections of the neural net were compared to ACES
selections and the selections of the Air National Guard pilots.

During the testing, it appeareL that the original set of training patterns
led to biases in favor of the maneuvers that were represented by more rules.

Consequently, the patterns for the maneuvers that had only a single rule
were duplicated, increasing the number of patterns in the training set.
Including three copies of the singletons produced 57 patterns, and
including four copies of each singleton produced 67 training patterns.

In an attempt P simplify the learning for the neural nets, another set of

training patterns was created by eliminating some of the 12 input variables.
Altitude and airspeed were eliminated because they were infrequently
referenced by the production rules. The clock positions were also not
referenced by many rules, and besides, they are redundant with the
information provided by the aspect angles and angle off. This reduction of
inputs led to patterns with 8 inputs. Still anothe. set of training pattetns

3Unfortunately this strategy conflicts with the coding of the values of inputs as levels of
input variables when they may take on the value of zero. The "zero strategy" did not work
very well in most cases.
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Table 6. Summary of Several NN Models Trained onACES Rules

Percent matches for
Model model andpilots selections
Trng. First First Top 3 First First Top 3
Set - Model Model Model Pilots Model Model

Unkwn. Trng. First Top 3 Top 3 Top 3 First Top 3
ID Method Epochs Pilots, Pilots, Pilots, Model, ACES ACES

ACES ---- 25.0 77.5 73.3 85.0 100.0 100.0

8-17 37-rand 110 20.0 45.0 35.0 30.0 47.5 49.3
8-32-17 37-rand 3,J00 20.0 42.5 31.7 37.5 25.0 53.7

8-32-17-17 37-rand 9,500 22.5 45.0 33.3 40.0 25.0 51.5

8-17 57-rand 360 32.5 52.5 43.3 57.5 7.5 55.9
8-8-17 57-rand 1,000 20.0 40.0 40.0 52.5 7.5 57.4
8-17-17 57-rand 470 25.0 50.0 40.0 52.5 7.5 60.3

8-17-17 57-0.5 207 32.5 55.0 38.3 60.0 2,5 53.7

8-17 67-rand 10 30.0 40.0 30.0 37.5 7.5 38.2
8-8-17 67-rand 290 32.5 50.0 42.5 55.0 2.5 75.7
8-17-17 67-rand 50 32.5 50.0 38.3 60.0 20.0 44.1

8-8-17-17 67-rand 440 35.0 52.5 40.0 55.0 5.0 56.6

12-17 38-rand 1,153 12.5 30.0 30.8 22.5 17.5 44.1
12-17-17 38-rand 12,522 22.5 40.0 33.3 27.5 25.0 48.5

12-12-20-17 38-rand 13,200 20.0 45.0 36.7 37.5 25.0 48.5

16-17 37-zero 55 20.0 40.0 31.7 35.0 15.0 42.6
16-16-17 37-zero 300 15.0 30.0 28.3 37.5 5.0 43.4

16-17 57-zero 50 25.0 50.0 39.3 55.0 5.0 50.0

16-17 57-rand 190 27.5 52.5 37.5 47.5 2.5 52.9
16-16-17 57-rand 90 35.0 55.0 40.0 57.5 2.5 50.0

40-17 67-0.2 30 17.5 22.5 22.5 32.5 0.0 31.6
40-40-17 67-0.2 22 20.0 25.0 13.3 25.0 7.5 19.9
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Table 9. Summary of Several NN Models 'raingd on ACES Rules

Percent matches for
Model ,_model andpilots selections

Trng. First First Top 3 First First Top 3
Set - Model Model Modelj Pilots Model Model

Unkwn. Trng. First Top 3 Top 3 Top 3 First I Top 3
ID Method Epochs Pilots Pilots, Pilots, Model, ACES , ACES

ACES ---- .... 25.0 77.5 73.3 85.0 100.0 100.0

8-17 37-rand 110 20.0 45.0 35.0 30.0 47.5 49.3
8-32-17 37-rand 32,00 20.0 42.5 31.7 37.5 25.0 53.7

8-32-17-17 37-rand 9,500 22.5 45.0 33.3 40.0 25.0 51.5

8-17 57-rand 360 32.5 52.5 43.3 57.5 7.5 55.9
8-8-17 57-rand 1,000 20.0 40.0 40.0 52.5 7.5 57.4
8-17-17 57-rand 470 25.0 50.0 40.0 52.5 7.5 60.3

8-17-17 57-0.5 207 32.5 55.0 38.3 60.0 2,5 53.7

8-17 67-rand 10 30.0 40.0 30.0 37.5 7.5 38.2
8-8-17 67-rand 290 32.5 50.0 42.5 55.0 2.5 75.7

8-17-17 67-rand 50 32.5 50.0 38.3 60.0 20.0 44.1
8-8-17-17 67-rand 440 35.0 52.5 40.0 55.0 5.0 56.6

12-17 38-rand 1,153 12.5 30.0 30.8 22.5 17.5 44.1
12-17-17 38-rand 12,522 22.5 40.0 33.3 27.5 25.0 48.5

12-12-20-17 38-rand 13,200 20.0 45.0 36.7 37.5 25.0 48.5

16-17 37-zero 55 20.0 40.0 31.7 35.0 15.0 42.6
16-16-17 37-zero 300 15.0 30.0 28.3 37.5 5.0 43.4

16-17 57-zero 50 25.0 50.0 39.3 55.0 5.0 50.0

16-17 57-rand 190 27.5 52.5 37.5 47.5 2.5 52.9
16-16-17 57-rand 90 35.0 55.0 40.0 57.5 2.5 50.0

40-17 67-0.2 30 17.5 22.5 22.5 32.5 0.0 31.6
40-40-17 67-0.2 22 20.0 25.0 13.3 25.0 7.5 19.9
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Onemodel is somewhat more similar to ACES. The 8-8-17 model

trained on 67 patterns with random values for the unknowns produced a

75.7% overlap with ACES' selections. Most of the models, however, failed to

reproduce ACES' selections which suggests that ACES' rules had not been

captured very well by the learning procedure (backward error propagation).

The failure of the NN models to achieve the same performance level as

ACES (let alone surpass ACES' performance) is, at first, somewhat

surprising. The claims made for the capabilities of NN models would lead

one to expect that given a large enough network, any input-output

relationship could be captured by the model. In one sense, this was true of

most of these nets because during the learning phase most of the nets

reached very high levels of accuracy on the learning patterns themselves.

Although as Table 6 shows, performance fell below that of ACES on the

generalization test.

There are several possible reasons that the neural net failed to precisely

capture ACES' rules. The adaptation of the rules to training patterns for

the NN models required some decisions about the appropriate treatment of

continuous inputs, inputs which specify a range, and inputs for the
"unknown" parameters. As a result, the training patterns do not directly

correspond to the rules. In fact, the training was accomplished by a
(theoretically) infinite number of training patterns whenever a random

selection was used to set values for unknown parameters and/or for the

values in the range of specified parameters. Despite our best efforts and

several different attempts, we wzre unable to find a representation of the

training patterns that produced an NN model capable of generalization
performance as good as the performance of ACES original rules. This
problem is clearly in need of further investigation.

Study 2: Application of Neural Networks to AML

OIeetve

In Study 2, we examine the ability of NN models to incorporate the logic

of another model, the AML model used in simulators to provide a

maneuvering adversary for air-to-air combat training. The training

patterns used to develop an NN model of AML do not suffer from the
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problems we encountered in developing an NN model of ACES. Thus, this

study should give an idea of the extent to which our earlier failures with
NN models for ACES were due to the problems associated with deriving

training patterns frcm production rules.

There are two additional motivations for the work. First, given AML's
status in the .CM simulated arena, it would be of general interest to be able
to simulate its logic with a neural network. Second, one criticism of AML is

that its logic is too rigid. Being sensitive to this, human pilots are often able
to detect its artificial nature. Once detected they can "sually determine its

weakness and then consistently beat it. Perhaps the generalization of an
NN model would help soften the decision boundaries of AML. If so,

maneuvering might appear more realistic to an opponent.

Background

AML is a computer simulation directed at selecting and executing

maneuvers for aircraft engaged in air combat. First, we describe the basic

components of AML. For a complete description of the program see the two
volume report by Burgin, Fogel, and Phelps (1975).

An important factor that distinguishes AML is the level of action

employed by the model. Whereas ACES and the classical maneuver
networks function at the basic fighter maneuver level, AML operates on

small action units called elemental maneuvers. Fundamental to the notion

of elemental maneuvers is the concept of a maneuver plane. A maneuver
plane is defined as the geometric plane that contains an aircraft's velocity

vector and is perpendicular to the earth's horizon. From this maneuver
plane, then, consider the set of planes produced by rotating the maneuver

plane about the velocity vector in integer multiples of some angle. For AML
this angle is typically between 5 and 15 degrees. During each decision

point, those elemental maneuvers considered for execution next (called
trial maneuvers) are members of the set of rotated maneuver planes.

Trial maneuvers are grouped into sets according to different flight

regimes. Four basic flight regimes are identified: (a) normal flight, (b) low

speed recovery, (c) dive recovery, and (d) over the top. The exact set of trial

maneuvers considered under each flight regime may vary with each
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implementation of AML. Table 7 shows the trial maneuvers used for each
regime in an implementation of AML at Luke AFB, Arizona.

Table 7. Specific Trial Maneuvers Considered under Each Flight Regime
in an Implementation of AML at Luke AFB, AZ

normal flight
same maneuver as executing
roll to level flight
normal level g roll to intercept opponent
max g roll to intercept opponent
max g defense (+900) from opponent
max g defense (-900) from opponent

low speed recovery
negative g roll to wings level
zero g roll to wings level
low speed zero g with current roll
recovery: one g roll to wings level
one g roll to intercept opponent

dive recovery
max g pull up
dive angle max g pull up off + side
recovery: max g pull up off - side

overthetop
max g roll to inverted wings level
over the top
max g roll to inverted wings off + side
max g roll to inverted wings off - side
max g intercept opponent

Each trial maneuver is associated with values for the three basic control
variables: load factor, bank angle, and thrust. As seen in Table 7, the load
factor is identified with each trial maneuver. Bank angle is also inherent
in the definition of the maneuvers. Thrust is assumed to be set to full

afterburner unless the situation requires rapid deceleration. This occurs
when an overshoot is imminent or when one wants to force the opponent to
overshoot. In this case, the throttle is set to idle and effects for speed brakes
are introduced into the flight equations.
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The selection of a particular trial maneuver is based on the future

positions of both the attacker, the AML controlled aircraft, and its target.

The target's future position is determined from its past coordinates

recorded at 1-s intervals. Polynomial equations are used-to extrapolate

along its flight path for some fixed prediction time (typically 2 to 4 s). The

extrapolation assumes a constant acceleration vector and flight within a

fixed plane. The target's attitude is assumed to be perpendicular to the

derived plane. Any errors resulting from this extrapolation technique are

sufficiently small to make the overall decision process feasible.

Next, the attacker's future position is predicted for each trial maneuver

within the flight regime identified as appropriate. Although exact future

positions for the interval between decision points could be made via flight

equations, an extrapolation technique is employed instead. This technique

helps conserve computing time. At Luke AFB, AML predicts the attacker's

future position with the same extrapolation technique used for the target.

The prediction time for the attacker is always the same as for the target.

Once the predicted situations are computed, AML selects that trial
maneuver resulting in the most favorable conditions for the attacker. A

value is derived for each situation by answering a series of yes-no questions

about the two aircraft's relative characteristics. Yes answers are given a

value of one and no answers a value of zero. A positive weight is associated

with each question that reflects the question's importance. That trial
maneuver resulting in the highest weighted suw is chosen for execution.
The specific set of questions used may vary across implementations of

AML. The questions asked in the version at Luke AFB are given in Table 8.

To summarize, AML selects low level or elemental maneuver actions by

evaluating several predicted future situations every 0.5 s. AML's action

unit is the elemental maneuver where elemental maneuvers can be

thought of as the subcomponents that might compose fighter maneuvers.

AML's decision-making processes were motivated by performance rather

than psychological processes. Finally, AML's training function is to drive

aircraft in real-time flight simulators.
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Table & Questions used to Evaluate Predicted Situations in an

Implemintation of AML at Luke AFB, AZ

1. Is opponent in front of me?
2. Am I in front of opponent?
3. Can I see opponent?
4. Can opponent see me?
5. Am I within a certain cone behind opponent?
6. Is opponent with a certain cone behind me?
7. Am I in attitude and position so I can fire at opponent?
8. Is opponent in attitude and position so he c~m fire at me?
9. Are we closing between 0 and 300 feet/second?

10. Is line-of-sight angle from me to opponent less than 60 degrees?
11. Is rate of change of line-of-sight angle from me to opponent negative?
12. Is my specific energy rate (Ps) greater than given constant?

Method

That part of the ACES code for defining airspace scenarios was used to
define a set of 35 training patterns here. Each pattern was defined by the
same 12 airspace descriptors used by ACES to select basic fighter
maneuvers. The AML algorithm was then applied to each pattern to
determine which of the 17 trial maneuvers would be selected. Not all of the
information in the set of 12 inputs was needed by the algorithm to select a
maneuver. Additionally, AML required some information not contained in
the 12 inputs, such as prior locations to extrapolate future position of
opponent. Nonetheless, we used the same set of inputs used by ACES in
order to maintain consistency across the models.

Results and Discussion

A 12-8-17 NN model was trained under back propagation learning to
select the 17 trial maneuvers. At the end of 7,130 epochs of training all 35
patterns were correctly classified. The results suggest that an NN model is
indeed capable of implementing the AML selection logic. The question of
whether maneuvers selected by neural networks would appear less
artificial than AML was not addressed. Rather than pursue this issue
further, we decided to concentrate on building NN maneuvering models
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directly from SAAC pilot data. We discuss the results of this effort in the
next two studies.

Study 3: Prediction of Air Combat Outcomes

Objective

This.section reviews several empirically derived NN models of air

combat outcomes. The models were based on engagements flown in the

SAAC at Luke AFB, AZ. The engagement data were collected as part of

another project aimed at identifying and validating performance measures

of air combat maneuvering. More specific information on the nature of the

engagements, characteristics of the pilots, and the method of data collection

can be found in Waag, Raspotnik, and Leeds (1992). This research was

based on 792 air combat engagements flown in the SAAC simulator at Luke
Air Force Base for which 28 airspace state parameters were collected and

averaged. The results of the engagements also were recorded as either
win, draw, or lose. From a subset of these data, NN models were created

using the back propagation-feed forward learning algorithm. These NN
models were tested against new cases and were also compared to models

based on discriminant analysis.

Method

The engagement data were first separated into a training and a testing

data set. Of the 792 engagements available, the first 400 were used to train

the NN nodel, and the last 392 were used to test the model's ability to
generalize to new patterns. Of the 28 air state parameters, 11 were chosen

to be used in both the NN and the discriminant analysis models. These

parameters are shown in Table 9. (The same parameters were selected as

those used in the earlier Multiship Air Combat R&D report from the

Armstrong Laboratory at Williams Air Force Base.)

Two different NN architectures were used to create models of air

combat. The first architecture was a perceptron (11-3 architecture), where

11 input units connected directly to the 3 p issible outputs (win, draw, or

lose). The second architecture was a multilayer NN (11-11-3 architecture),

with 11 inputs, 11 nodes in the hidden layer, and 3 outputs.
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Table 9. 'Parameters Included in the Models

AAMI defensive Throttle position
AAMI offensive Percent time throttle half to mil
AAMI percent offensive Missiles fired in parameters
AAMI average offensive Missiles fired out of parameters

Closing rate Gun Misses

Ps (energy management)

Note. AAMI = All Aspects Maneuvering Index

The NN models were trained with varying numbers of training epochs.

The perceptron architecture was trained for 50 and 1,200 epochs. Because

the multilayer architectures learn much slower, they were trained with
both 300 and 3,000 epochs.

Results

The generalization performance of the various NN models is shown in
Tables 10 through 13. All the models classify correctly approximately 80%
of the generalization test patterns. The figure in the lower right corner of

the tables represents the overall percent correct classifications with each
engagement weighted equally. Averages of the row, and column
percentages are also shown.

The perceptron models (Tables 10 and 11) performed slightly better than

the multilayer models (Tables 12 and 13) using the overall percent correct.

The differences between the models appear to be due to differential

performance on classifying patterns into the win, draw, or lose conditions.

Specifically, the perceptron models correctly classified an average of less

than 50% of engagements resulting in draws. Because draw outcomes

accounted for only 13% of the testing data, this poorer performance did not

have a great effect on the overall performance measure. The mean percent

correct measure equally weights each outcome. With the mean percent

correct measure, the multilayer models classified engagements slightly

better than the perceptron models.
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Table 10. Performance of Perceptron Network (1,200 Epochs)
Model classification

Engagement Percent
outcome' Win Draw Lose Overall correct

Win 152 10 17 179 84.91
Draw 8 29 14 51 56.86
Lose 5 8 149 162 91.98

Overall 165 47 180 392 77.91
Percent correct 92.12 61.70 82.78 78.87 84.18

Table L Performance of Perceptron Network (50 Epochs)
Model classification

Engagement Percent
outcome Win Draw Lose Overall correct

Win 149 6 24 179 83.24
Draw 10 21 2D 51 41.17
Lose 5 4 153 162 94.44

Overall 164 31 197 392 72.95
Percent correct 90.85 67.74 77.66 78.75 82.40

Table 12. Performance of 11--3 Network (3,000 Epochs)
Model classification

Engagement Percent
outcome Win Draw Lose Overall correct

Win 147 15 17 179 84.48
Draw 10 31 10 51 60.74
Lose 3 14 145 162 89.50

Overall 160 60 172 392 78.24
Percent correct 91.88 51.67 84.30 75.95 82.39

Table 1& Performance of 11-11-3 Network (300 Epochs)
Model classification

Engagement Percent
outcome Win Draw Lose Overall correct

Win 143 23 13 179 79.88
Draw 8 33 10 51 64.71
Lose 3 21 138 162 85.18

Overall 154 77 161 392 76.59
Percent correct 92.86 42.86 85.71 73.81 80.10
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The similarity in the performance of the linear (11-3 perceptron) models
and the more complex nonlinear (11-11-3 multilayer) models suggests that

this. blem space is primarily linear. Not much is gained in

generalization performance by using the more complex, nonlinear, model.
This conclusion can be examined further by comparing the performance of

these NN models to the more traditional discriminant analysis model.

Discriminant Analysis Model

A model of air combat outcomes was also created using discriminant

analysis. Discriminant analysis uses a least squares technique to classify
patterns of data into categories. The performance of the discriminant

analysis model on the engagement data is shown in Table 14. This model
yields a level of performance very similar to that of the NN models.

Table 14. Matches between Actual Outcomes and

Discriminant Analysis Classification

Model classification
Engagement Percent

outcome Win Draw Lose Overall correct

Win 141 13 25 179 78.77
Draw 8 29 14 51 56.65
Lose 5 15 142 162 87.65

Overall 154 57 181 1-, 74.35
Percent correct 91.56 50.88 78.45 73.C3 79.59

Table 15 shows the correlations among the actual outcomes and the

classifications made by the models (win, draw, and lose coded as 1, 2, and 3,
respectively).

Both NN models and discriminant analysis models assign some priority

to the possible outcomes. Discriminant analysis does this by calculating the
probabilities of each outcome, while the NN models assign differing

activations to the output units. By dividing the output activations by the

sum of the total output activations, a measure similar to the discriminant
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analysis probabilities can be created, and the two measures can be

compared.

Table 15. Correlations among Outcomes (Win, Lose, or Draw): ACM Data

Perc. Perc. 11113 11113
Actual Disc. 50 1,200 300 3,000

Actual 1.00 .75 .79 .82 .81 .81
Outcome

Discriminant .75 1.00 .93 .89 .81 .88
Analysis

Perceptron 50 .79 .93 1.00 .94 .86 .92
epochs

Perceptron .82 .89 .94 1.00 .90 .96
1,200 epochs
Net 1111 3 .81 .81 .86 .90 1.00 .92
300 epochs
Net 1111 3 .81 .88 .92 .96 .92 1.00

3,000 epochs

The outcome probabilities of the discriminant analysis model and the

relative activation of the outcomes in the 4 NN models were correlated

across the 392 test engagements. Table 16 shows the correlations among
the magnitude of the output units for the various models.

By a small margin, the largest correlation with the actual data is the

1,200 epoch perceptron model. Again this result might be tainted by the

smaller proportion of draws in this data set. The correlations also show a

strong relationship between the various models. The correlation between
the discriminant analysis model and the 300 epoch multilayer model is the

weakest with an r of .80, while strongest correlation is between the 50 epoch
perceptron model and the 1,200 epoch perceptron model with an r of .97.

Given the similar performances in classifying patterns of data into

categories, the high correlations between models should be expected.
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Table 16 Correlations among Output Units: ACM Data

Pei,;. Perc. 11-11-3 11-11-3
Actual Disc. 50 1,200 300 3,000

Actual 1.00 .75 .79 .82 .81 .81
outcome

Discriminant .75 1.00 .96 .93 .80 .92
analysis

Perceptron .79 .96 1.00 .97 .83 .95
50 epochs

Perceptron .82 .93 .97 1.00 .86 .96
1,200 epochs
11-11-3 Net .81 .80 .83 .86 1.00 .89
300 epochs
11-11-3 Net .81 .92 .95 .96 .89 1.00

3,000 epochs I___I

One unexpected aspect of the correlational analysis is the relatively low r
between the discriminant analysis model and the actual outcomes

compared to its performance classifying patterns of data. While the
discriminant analysis model performed similarly to the NN models in

classification, its correlation with the actual data was much lower than any

of the other models. The discrepancy between classification and correlation

scores suggests that while the number of correct classifications between
both types of models is similar, the discriminant analysis models tend to
make bigger mistakes. In other words, the discriminant analysis models

tend to classify incorrectl; more losses as wins, compared to the NN models
that tend to incorrectly classify losses as draws (assuming, of course that a

draw is closer to a loss than is a win).

Discussion

Although the performance of the discriminant analysis model is slightly

below that of NN models, discriminant analysis can be used to identify
which variables have the most predictive utility for categorization. Thus, it
may be useful to employ discriminant analysis in deciding what

parameters should be used as inputs to an NN model.

The results discussed thus far have centered on the relationships of the

various models to the actual results. However, these data also describe the
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nature of the prediction of air combat outcomes. The principal finding
demonstrated by the current research is that this problem, space is

essentially linear because of the approximate equivalence of classification
performance between the nonlinear multilayer models and either the
linear perceptron or the discriminant analysis models.

To summarize Study 3, four points can be made. First, NN models can
achieve a reasonable degree of accuracy in predicting the outcome of air
combat engagement3 based on only summary air state data. Second,

among NN models there is little difference between perceptron models and
more complex multilayer models. Third, discriminant analysis yields
results very similar to that of the NN models which is to be expected if
linear networks perform as well as nonlinear systems. Consequently, the
results of these empirical models suggest that this problem space for

predicting air combat engagement outcomes is primarily linear.

Study 4: Prediction of g Leading and Roll

Ow~ed"v
In Study 4, we describe an effort to develop NN models to predict aircraft

flight control variables. As in Study 3, and in contrast to Studies 1 and 2,

our interest here is in deriving network models directly from empirical
data. In addition, the models are aimed at actually controlling the inputs
required to maneuver an aircraft. Hence, the models are similar to AML as
maneuvering models, but rather than being based'on an artificial
maneuvering logic, they are derived from actual flight data.

Some of the specific questions in this part of the work include: (a) How

accurate are neural network models in predicting flight control inputs
from past airspace information? (b) How does the accuracy of the
predictions vary as a function of increasing prediction time? (c) To what

extent do the NN models need to use nonlinear information? (d) How well
do models derived from one source of engagement data generalize to other

engagement data? and (e) How does performance degrade as the set of
predictor variables is reduced to be more psychologically meaningful?
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Method

As with the models in- Study.3, the models described in Study 4 were
based on engagements flown in the SAAC at Luke AFB, AZ. The database
for Study 4 consisted of four 1-v-1 engagements flown between a single
subject matter expert (SME) and F-15 and F-16 pilots recruited specifically
for the project. Each engagement resulted in a win, loss, or draw.
Although the SME typically won the majority of the engagements flown
against his opponents, an occasional pilot would outmaneuver the SME a
majority of times. For Study 4, we selectedSAAC data from a pilot who beat
the SME three out of the four engagements. Because of the high skill level
of this pilot, we assumed that these engagements were representative of
particularly good maneuvering. We refer to the four engagements as
Engagement 1, Engagement 2, Engagement 3, and Engagement 4. The
four engagements lasted 51.5, 79.5,148, and 59.5 s, respectively.

The SAAC data record consists of 32 variables that describe airspace
situational information for each of the two aircraft, flight and weapons
characteristics, and performance measures (see Table 17). Values for each
variable were recorded once every 0.5 s. We refer to each 0.5 s data record
as a pattern. Hence there were 103, 159, 296, and 119 patterns for the four
engagements, respectively, for a total of 677 patterns.

Table 17. The 32 Variables in the SAAC Ei 1gagement Database.
antenna train angle indicated air speed
angle off tail earth axis x position
angle off tail azimuth earth axis y position
angle off tail elevation earth axis x velocity
range earth axis y velocity
closing velocity earth axis z velocity (vertical velocity)
line of sight azimuth earth axis z acceleration
line of sight elevation sideslip - absolute value of beta
aami for heat missile pitch
aami for guns roll
max aami for all weapons yaw
romp pitch rate
gs roll rate
angle of attack yaw rate
altitude weapon code 1=radar, 2=heat, 3=guns
turn rate specific excess energy
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Selection of Input and Output Variables

The NN models are intended to predict future aircraft states given
current situational information. Specifically, we chose to predict future g
and roll angles. Knowledge of these-two variables, along withthrust

setting, offers a complete specification of flight control inputs. Our models

attempted to predict the state of these variables for 1, 2, and 4 s into the

future. Further, all of the models attempted to predict the future state of the

SME's aircraft. We chose to model the SME because he is an acknowledged

expert and also because there exists a large number of SAAC engagements

from which the models may be both derived and later tested.

After eliminating g and roll angle from the set of data variables, we

selected a subset of the remaining 30 variables in the SAAC database to

serve as inputs to the models. To select this subset, we first correlated each

of the 30 variables for both aircraft with the future values (at 1, 2, and 4

seconds) of g and roll. The primary purpose of this correlational analysis

was to insure that we did not eliminate variables that were particularly

good predictors of the outputs by themselves. However, our interest was not

simply in maximizing prediction. Rather, we wished to construct models

that were constrained by both the number of variables represented and by
the type of information contained. In particular, we wished to exclude
variables that were descriptions of low-level information (e.g., specific

excess energy, side-slip) especially if they were not particularly predictive.

In addition, we hoped to select inputs that resembled the set of inputs we

used in our previous models of ACES and AML. This correspondence of the

inputs should facilitate comparisons across models.

Based on these criteria we selected a candidate set of inputs consisting of

7 variables specific to each aircraft plus 2 variables giving relative

information. These 16 variables along with their correlations (all of the

correlations reported in this section are Pearson correlations) to the output

variables across the 3 prediction times are shown in Table 18.

Several points need to be made regarding these correlations. First, the

correlations were based on Engagement 3 data only. Engagement 3 was

selected to serve as the source of training data for the models because it was

the longest engagement (almost twice as long as the next longest
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engagement). Because of its length (approximately 2.5 min), the pilots had
an opportunity to engage in rather lengthy maneuvering employing both

strategies and counterstrategies. In contrast, short engagements are likely

toculminate in quick kills and are more likely to reflect lucky decisions on

the part of the winner or uninteresting errors on the part of the loser.

Second, the correlations in Table 18 were obtained by first offsetting the

values for g and roll by the required number of patterns to reflect the

prediction time. For example, to predict SME g 1 s in the future, the first

two (two because patterns reflect 0.5 s) values of g were dropped and the

remainder of the g's moved back two patterns. Because there were 296
patterns for Engagement 3, the correlations were based on 294, 292, and 288
patterns for predictions of 1, 2, and 4 seconds in the future, respectively.

Notice first in Table 18 that there is considerable variability in the
predictiveness of the input variables. The correlations range from around 0

to .96. Also, the predictions of g are generally higher than of roll angle. The

best predictors for g are the SME aircraft variables (particularly indicated
airspeed, vertical velocity and altitude), whereas the best predictors, of SME
roll angle are his opponent's variables. In the case of g, the correlations

tend to decrease with prediction time, as might be expected. However, the

correlations actually increase for predicting roll angle as future time
increases. We were curious about this phenomenon, wondering just how

far out this trend might hold. So we correlated the input variables with roll

angle for times beyond 4 s. The results showed that the correlations peak at

4 s and decline thereafter. We have not yet determined whether this
phenomenon is generally true for predicting roll angle or is specific to this

engagement. In any case, we can already see some interesting differences

between predicting future g and roll angle simply based on the correlational

analysis.
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Table 18. Correlations Between 14 Variables and Values of SME g and Roll

for 1, 2, and 4 Seconds in the Future.

SME g SME Roll

is 2s 4s is 2s 4s

Opponent aircraft variables
antenna train angle .10 .11 .04 -.06 -.11 -.10
angle of attack -.33 -.32 -.33 -.10 -.01 .11
altitude .58 .56 .50 -.18 -.21 -.27
turn rate .19 .15 .09 -.21 -.2i -.20
indicated air speed .69 .70 .71 -.13 -.16 -.22
vertical velocity .00 -.04 -.05 -.30 -.31 -.34
pitch -.02 .02 .03 .23 .24 .28

SME aircraft variables
antenna train angle .09 .09 .01 -.01 -.10 -.20
angle of attack -.34 -.49 -.61 -.05 -.13 -.08
altitude .55 .55 .54 -.21 -.23 -.27
turn rate .44 .44 .42 .09 .05 -.10
indicated air speed .96 .94 .83 .10 .08 .01

vertical velocity .64 .66 .59 -.12 -.08 .00
pitch -.41 -.50 -.58 .13 .10 .03

Relative variables
range .60 .52 .39 -.03 -.02 -.03
closing velocity -.06 -.06 .05 .11 .13 .05

Selection of Training and Test Patterns

Having selected the input and output variables for the NN models we are
now ready to identify a set of training and test patterns. As mentioned
earlier, we selected Engagement 3 to serve as the primary source of
training data. Because we wished to use Engagement 3 for both training
and testing the models, we split its 296 patterns in half. The first half
would serve as training patterns and the second half as test patterns. We
partitioned Engagement 3 patterns in two different ways. In the first
method, which we call the Interleaved Training Set, we selected the odd-
numbered patterns (which would now occur in 1-s intervals) to serve as
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training patterns and used the even-numbered patterns to test

generalization. One might argue that this is not a very stringent test of

generalization because of the close connection in time between the training

and test patterns. However, because of the very temporal nature of the task,

we felt it was an important case to consider. Further, the second method of

partitioning the patterns would allow us to examine this time-dependency

relation between training and test patterns. In this second method, which

we call the Split-Half Training Set, the training patterns come from the

first half of the engagement and the test patterns from the second half.

The Interleaved Training Set consisted of 144 patterns, the minimum

number of distinct patterns available for training across the three

prediction times (148 one-second patterns minus 4 patterns). The Split-Half

Training Sat consisted of 140 patterns (148 half-second patterns minus 8

patterns). In both cases, the number of test patterns was the same as the

number of training patterns.

Each variable was first transformed to the range [0,1] in order to

standardize the network weights. A linear transformation converted the

values by subtracting the minimum from each score and then dividing this

difference by the range. The minimum and maximum for each variable

was based on all 677 patterns across the four engagements.

Network Topology

We investigated two basic topologies for the NN models, one with a layer

of hidden nodes (i.e., multilayer network) and one without (i.e., single-layer

perceptron model). The comparison of models with and without a hidden

layer addrei-es the question of the nonlinearity of the task. For models

with a hidden layer, the number of hidden nodes was chosen to be

approximately one-fourth the number of input nodes. This value was

selected after trying several different numbers of hidden nodes, usually in

the range of one-tenth to one-half of the number of inputs. Based on both

the degree of learning of the training patterns and the extent of

generalization for the test patterns, we found that the one-fourth value gave

the best overall performance. The output of all the networks consisted of

one node for either g or roll.
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Network Training

All of the networks were trained using a standard back-propagation

learning method. The learning rate was set at .45. Recall that a training

epoch is the presentation of each pattern in the training set once to a model.

For each epoch, the training patterns were randomly ordered. Each model

was submitted to 5,000 epochs of training. This upper bound of 5,000 epochs

was chosen to -ensure that the models had adequate time to train. In fact,

the set of weights that resulted in the maximum percent classification, and
hence the set used to test generalization, often occurred much earlier in the

training.

The tolerance criterion was set at .04. That is, a pattern was considered

successfully classified if the actual output value was within .04 of the
desired output value. Given a tolerance value, the performance of a model

is measured by the percent of patterns (either in training or testing) that

resulted in outputs within the specified tolerance. The .04 criterion mapped

into actual units of approximately one-half g and 15 degrees of roll angle.
Hence, a pattern was considered correctly classified if the output value was

within these limits.

Results

We first performed a simple regression analysis to determine how much

of the variance in future outputs could be accounted for by a simple linear
combination of the input variables. The analysis was based on 294, 292, and
288 patterns for predicting the SME's output values 1, 2, and 4 s in the
future, respectively. The regression analysis was performed on data from
Engagement 3.

Table 19 shows the multiple R values for each of the six regression

models along with the t-scores for each of the predictor variables. Several

observations made from examining the simple correlations in Table 18 are

corroborated here. First, the prediction of future g is higher than future
roll angle. Approximately 80% of the variance in g 4 s in the future can be

accounted for by a simple linear combination of the variables. In contrast,

at best only about 14% of the variance of future roll angle is explained.

Based on this analysis we should expect a perceptron model to do well in
modeling future g but poorer for roll angle. We turn to these models
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shortly. Second, although many of the variables that were individually

highly correlated with the outputs are good predictors in the regression
model, there are some exceptions. For example, although antenna train

angle is not highly correlated with the outputs individually, it does play a

significant role in several of the regression models.

Table 19. Multiple R Values and t-Scores of Individual Predictor Variables
Ifor the Six Linear Regression Models Predicting SME g and Roll

at Future Times of 1, 2, and 4 Seconds.

SME g SME roll

is 2s 4s Is 2s 4s

Multiple R .96 .94 .90 .31 .30 .37

Opponent aircraft variables

antenna train angle -2.55 -2.99 -2.42 -.11 -.86 -3.32

angle of attack -.54 .39 1.15 -2.33 -2.05 -2.97

altitude -.64 .10 -1.04 2.22 .90 -2.10

turn rate 1.41 .32 -1.28 -1.38 -.40 .77

indicated air speed -1.01 1.61 6.02 -3.08 -3.27 -3.13

vertical velocity -1.46 -3.41 -6.45 -1.45 -1.59 -.08

pitch -1.01 -1.99 -3.77 -1.30 -.81 2.18

SME aircraft variables

antenna train angle -1.79 -.81 2.22 -.15 -1.26 -6.33

angle of attack 2.23 -5.49 -5.92 .28 -2.39 -2.95

altitude .68 -.04 1.00 -2.51 -1.15 1.83

turn rate 6.13 .76 -1.80 2.96 2.57 1.17

indicated air speed 18.62 13.23 5.90 3.09 2.13 1.72

vertical velocity 4.09 2.90 1.14 -2.95 -1.38 -.42

pitch 1.69 -1.17 -4.41 -2.31 -.60 1.04

Relative variables

range 1.87 -1.84 -5.41 -.22 1.42 3.78

closing velocity -3.72 -3.34 1.33 1.08 .04 -5.64
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NN Models: Interleaved Training and Test Patterns

The first set of NN models attempt to predict future g and roll angle

using the 16 input variables shown in Tables 18 and 19. These models were

trained and tested on the Interleaved Training Set. As mentioned earlier,

the training patterns always came from SME data. Two different topologies
were used, a 16-1 single-layer network and a 16-4-1 multilayer network.
The results of both training and a generalization test are shown in Table 2.

The most striking result is the difference in predictiveness between g
and roll angle. Considering the 16-1 network first, the percent of patterns

correctly trained for g was roughly three times the number for roll angle.
In agreement with the correlation and regression analyses just reported,

we find that roll angle is a more complex and likely nonlinear classification
problem.

Table 20. Percent Predictions in Tolerance for Training and
Test Patterns for a Perceptron (161 topology) and

a Multlayer Network (16-4.1 topology)
based on the Interleaved Training Set.

Training Generalization

16-1 1641 16-1 164-1
g

is 91 92 95

2s 89 89 88 91

4s 80 85 77 86

Roll

Is 26 43 26 40

2s 26 50 21 41

4s 26 49 24 40

By considering the performance of the multilayer network we can

determine how much a nonlinear model improves classification. We see
from Table 20 that the 16-4-1 networks resulted in only slightly better

classification performance of future g, but considerable improvement

occurred in predicting roll angle. Even here, however, at best 50% of the
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patterns in the training set were correctly classified.. These results suggest
that the set of input variables may be insufficient for predicting roll angle.

Note also in Table 20 that, for both g and roll angle, the improvement

that occurs with the 16-4-1 models increases with higher prediction times.
Perhaps it is not too surprising that longer prediction times require more

complex and hence more configural models.

Finally, we examine how well the trained models generalize to a new set

of test patterns. The results, also shown in Table 20, are that, overall, the
models generalize quite well. The percentage of correct classifications for

test patterns is about as high as for training patterns. Generalization of the
models trained to predict g was particularly impressive; in several cases

the percentage of correct classification for the novel test patterns was
higher than for the training patterns. Generalization was somewhat

poorer for roll angle, indicating again the greater difficulty in predicting

this variable.

Recall that the training and test patterns for the Interleaved Training

Set were selected from every other half-second of data across the

engagement. Such a close correspondence in time between the two sets of
patterns would likely enhance the ability of the models to generalize. A
more stringent and perhaps more realistic test is whether a model trained

during one segment of an engagement could predict the output variables

during another segment. We turn to this issue in the next set of models.

NN Models: Split-Half Training and Test Patterns

The same types of models were trained here as for the last analysis but

now with the Split-Half Training Set. Table 21 shows the results.
Examining first the models trained to predict g, we find that the training

performance for both the single-layer and multilayer networks is

comparable to the earlier models, obtaining around 85 to 95% correct. We
also see that the models' predictions decrease as future time increases, and
there is a slight advantage of the multilayer network over the single layer.
However, the generalization data tell a somewhat different story than

before. Generalization still looks strong for predictions of 1 s in the future,

but as prediction time increases, the models' ability to generalize falls off
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rather sharply. This pattern of results suggests that the high

generalization performance found for the Interleaved Training Set was in

fact due to the close temporal association of the training and test patterns.

Given the more realistic task of predicting g for a segment of the

engagement different from the training segment, and for times beyond 1 s,

the models' generalization performance begins to decrease. Notice also

that under these more difficult conditions, the multilayer network

generalizes best. With the 16-4-1 model, it is possible to predict g 4 s into the

future on 63% of the test patterns.

Consider next the models trained to predict roll angle. First notice that

the training performance for both topologies was higher than for the

Interleaved Training Set. Although this difference could be due simply to a

different sample of training patterns, we suspect that it is a result of
something else. Recall that for the Split-Half Training Set the patterns

come from half-second data whereas the Interleaved Training Set contains

1-s data, The closer the patterns are in time the more similar they are.

Therefore, it would seem to be an easier task to train a model on half-second

than full second data, particularly if the classification task is difficult to

begin with. Also, notice again the marked improvement of the multilayer

over the single-layer network. In fact the performance of the multilayer

model for predicting roll angle is beginning to approach the performance of

the multilayer model for g (77 vs. 88). However, the picture changes

drastically when we consider the generalization data.

Put simply, the roll angle models do not generalize w'.th the Split-Half

Training Set. Two points need to be made. First, the generalization found

for the Interleaved Training Set was very likely due to the close time

correspondence between the training and test patterns. When tested on a

completely different segment of the engagement, the models predict poorly.

Second, despite the. advantage of the multilayer network in learning to

classify the training patterns, there is little if any generalization advantage.

The likely conclusion seems to be that the set of input patterns is

insufficient for predicting future roll angle. We will return to this point

later during the summary. For the moment, however, we continue to focus

on g by investigating a new set of models with reduced information in the

input variables.
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Table 21. Percent Predictions in Tolerance for Training and
Test Patterns for a Perceptron (14topology) and

a Multilayer Network .(1641 topology)
based on the Split Half Training Set.

Training Generalization

16-1 164-1 16-1 16-4-1
g

Is 92 97 97 82

2s 88 94 70 70

4s 85 88 31 63

Roll

is 42 65 6 6

2s 41 70 5 4

4s 43 77 8 10

NN Models: More Psychologically Realistic Inputs

The question we address here is whether our success so far in modeling

g might be due to having included input variables that relate to g througih

simple flight-related associations. For example, g, turn rate, and airspeed
are simple derivatives of one another. Perhaps simply knowing the current
values of these variables allows good prediction of future g. If so, a more
interesting question would seem to be to assess how well future g could be

predicted from knowledge of more psychologically meaningful variables

such as the opponent's relative position and orientation, and relative
information such as range and closing velocity. To pursue this issue we

eliminated five variables from the set of inputs used in the previous models:
the SME's airspeed, turn rate, angle of attack, and the opponent's airspeed
and angle of attack. We used the remaining 11 variables to train single-
layer (11-1 topology) and multilayer (11-3-1 topology) models to predict future
g. The models were trained from the Split-Half Training Set. The results

are given in Table 22.
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Table 22. Percent Predictions of g in Tolerance for Training and
Test Patterns for a Perceptron (11-1 topology)

and a Multilayer Network (1-M-topology)
based on the Split-Half Training Set.

Training Generalization

11- 11-3-1 11-1 11-3-1
g

is 67 88 30 40

2s 59 87 11 38

4s 64 84 0 53

As might be expected, the percentage of patterns learned during

training dropped for the reduced set of inputs. However, the reduced

models for predicting g were still better than were the full models for
predicting roll angle. Notice also that the decline in percent classification

for the reduced models was less for the multilayer than single-layer
network and less for longer than shorter prediction times. In fact, the
reduced multilayer model for predicting g 4 s into the future learned as well

as the comparable full model. Unfortunately, this trend does not hold for

the generalization test.

The generalization performance of the reduced models falls

considerably below the full models, suggesting that at least part of the

earlier success was due to the low-level flight relations among the
variables. Despite the overall poorer showing, the multilayer network
predicted around one-half of the SME's g values 4 s into the future.

Discussion

In summary, the results of predicting future flight c:ntrl variables by
NN models were somewhat mixed. First, clear differences were found in

predicting g and roll angle. Although NN models were fairly successful at
predicting future g, the results were disappointing with roll angle. Second,

there was an overall advantage of multilayer over single-layer models. The

nonlinear dimensions of the task, and hence the multilayer advantage,

were more pronounced for predicting roll angle than g, for predicting

longer than shorter future times, and for predictions based on a reduced
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rather than a full (i.e., 11 vs. 16) set of inputs. Third, the relatively high
performance found with the Interleaved Training Set was likely a function

-of the close temporal connection between the training and test set.

It is important to keep in mind some of the limitations of the current

work. Although we attempted to select an initial set of input variables that

were good predictors, it is possible that some particularly good
combinations of variables were excluded. Perhaps a more thorough
analysis of sets of input variables would turn up more predictive inputs.
Also, the models were based on data from a single engagement and a single

pilot. Although we believe our rationale for choosing the particular
engagement and pilot was justified, additional work is clearly needed to
extend the modeling efforts beyond these limitations. Finally, a finer-
grained analysis of prediction time seem, warranted. Several intriguing
results deserve further exploration, incluaing the better training
performance for roll angle under longer prediction times and the
occasional better generalization under longer times for predicting g.

General Conclusions and Future Directions

As is usually the case in research, our work under this contract has
raised more questions than it has answered. Our attempts to train NN
models using ACES' rules revealed several problems in defining training

patterns from production rules. Our limited success in capturing the
ACES logic suggests either that we have not yet hit upon the correct method
for representing production rules in NN training patterns or that the types

of neural nets we have investigated do not lend themselves to representing
the logic contained in ACES. ACES is a classical symbolic model
representing decisions in discrete rules while the NN models used
numerical values of variables directly. Perhaps the difference between the

discrete symbolic and analog representations is responsible for the
differences in the two approaches. As another possibility, the back
propagation learning algorithm is a hill climbing procedure, and as such

is subject to the problem of getting stuck on local maxima (or minima,
depending on the structure of the problem). There are other methods, such
as simulated annealing, that arc less sensitive to the problem of local
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maxima. Some additional work employing such methods to learn ACES'
rules would be of value.

Our work in modeling AML logic was more limited, but the results we

obtained suggested that NNs are capable of incorporating AML logic.

Unfortunately, AML has serious limitations as an automated adversary so

we concentrated more on developing models from SAAC data.

The models based on SAAC summary data indicated that linear NN
models were quite comparable to models based on discriminant analysis as

we expected. Further, nonlinear NN models did not perform any better

than the linear ones. This finding shows that linear models are sufficient

for this problem which is not easily determined using regression

procedures. However, once the linearity of the problem is established, the

well-established statistical models are probably preferable to the NN models
because of the well-developed analytical procedures available with the

statistical models.

The models trained to predict aircraft control variables in the SAAC

engagement database produced some interesting results. We found that we

could more accurately predict future g's than future roll angle. Predicting

g's was largely linear whereas predicting roll angle was superior with
nonlinear models. When the generalization test was conducted on entirely

different time segments of an engagement, prediction of g's was still
relatively good, the models failed to predict roll angle at all. We should

emphasize that these models were trained on segments of a single

engagement, and more extensively trained models may behave differently.

Finally, we suggest some additional research issues for future work.
First, it is interesting to consider the performance of AML in light of our

attempts to model g and roll angle with NN models. One might ask why
AML does as well as it does given the complexity of the task. The answer is

that AML's decision logic is based on extrapolating the future position of its

opponent from past situational information. We wonder how much

improvement in the current NN models would result from incorporating

similar information. Instead of formally extrapolating the opponent's

future state and representing it explicitly as inputs, one possibility would be

to give the model input nodes that corresponded to historical situational
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information of the opponent. The question then is whether an NN model

could learn to perform the necessary extrapolation of future-information

and then use this information to predict future states.

A second line of future work involves building models specific to

particular airspace situations (e.g., offensive, defensive, neutral). Given

the dynamic nature of ACM, it is perhaps unreasonable to expect single

models to predict future flight control variables under all conditions.

However, if engagement data could first be parsed into engagement types,

appropriate models could then be invoked.
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